И снова об освещении теплиц

Световой режим и методы его регулирования


Освещение в теплицахВсе основные факторы фито– и микроклимата в культивационных сооружениях, кроме освещенности, можно создать искусственно. Освещенность растений экономически выгодно обеспечивать солнечной радиацией, и только в отдельных случаях прибегают к дополнительному электрооблучению. Для понимания характера формирования микроклимата в теплицах надо освоить понятие солнечной радиации и значение ее составляющих.

Солнечная радиация – основной климатический фактор в каждой природно-климатической зоне, который определяет периоды выращивания и набор культур в культивационных сооружениях. Различают прямую, рассеянную и суммарную радиацию. Радиация, поступающая на поверхность земли в виде пучка параллельных лучей, определяется как прямая. Часть солнечной радиации, которая поступает на земную поверхность в результате рассеивания прямой радиации взвешенными в воздухе твердыми частицами, молекулами газов воздуха, называется рассеянной. Общее количество прямой и рассеянной радиации составляет суммарную радиацию.

Солнечная радиация представляет собой электромагнитное излучение с волнами различной длины. Область солнечного спектра, на которую приходится практически вся лучистая энергия Солнца с длиной волны 280– 3000 нм, называется коротковолновой, свыше 3000 нм – длинноволновой радиацией. Видимая часть спектра – это промежуток спектра с длиной волны 400–750 нм. Глаз человека воспринимает волны этой длины только как разные световые ощущения. Излучение с длиной волны более 750 нм составляет инфракрасную область спектра . Она подразделяется на ближнюю (750–2000 нм) и дальнюю (свыше 2000 нм). Тепловое, или длинноволновое, излучение приходится на область спектра с волнами длиной 5000–15 000 нм. Для нормального роста и развития растений имеет значение главным образом коротковолновое излучение (380–710 нм), поглощаемое пигментами пластид. Это физиологическая, или фотосинтетическая активная радиация (ФАР). Рассеянная радиация содержит 50–60 % ФАР, прямая – 35–40 %.

Многих интересует вопрос, полезны или вредны ультрафиолетовые лучи. Ультрафиолетовое излучение представляет собой мощный фактор воздействия на растения. Оно стимулирует накопление пигментов, вырабатывает устойчивость к неблагоприятным условиям, фотосинтез, увеличивает продуктивность, предотвращает чрезмерное вытягивание, снижает заболеваемость растений, повышает качество плодов. Важную роль это излучение играет в закаливании рассады. Выросшая без доступа ультрафиолетовых лучей рассада в открытом грунте получает ожоги, теряет листья и может погибнуть.

Ультрафиолетовое излучение делят на коротковолновое (менее 280 нм), средневолновое (280–315 нм) и длинноволновое (315–380 нм).

Коротковолновое ультрафиолетовое излучение, нарушая структуру хлоропластов, угнетает рост и развитие растений, подавляет биосинтез пигментов, вызывает денатурацию белков.

Средневолновая ультрафиолетовая радиация исключительно важна для формирования нормальных растений, повышения содержания белков и витаминов в тканях. Продолжительное воздействие этих лучей малыми дозами благоприятно воздействует на ряд физиологических процессов в растении, в то время как от больших доз растения могут погибнуть.

Длинноволновое ультрафиолетовое облучение способствует увеличению содержания хлорофилла, интенсивности фотосинтеза, задерживает рост растений.

Поскольку в солнечном спектре отсутствуют лучи короче 295 нм, а приток ультрафиолетовой радиации не превышает 5 %, необходимо наибольшее проникновение этих лучей к растениям.

Понять закономерности формирования температурного режима в сооружениях защищенного грунта позволяет знание характера инфракрасной радиации. Инфракрасная радиация с волнами длиной свыше 1000 нм способствует правильному формированию растений и более интенсивному накоплению в них сухого вещества. Она в основном поглощается водой тканей растений и определяет температурный режим тканей листьев. Роль этих лучей положительна при температуре ниже 20 ℃ и отрицательна

при температуре свыше 30 ℃.

Ночью длинноволновое излучение 5000–25 000 нм является единственным источником энергии, поступающей из атмосферы к поверхности почвы. Кривая спектрального излучения имеет минимальное значение при 10 000 нм. В этой области находится максимум излучения почвы и растительного покрова. В ясные ночи излучение почвы и растительного покрова преобладает над поступлением радиации, поэтому для сохранения тепла, накопившегося за день в культивационном сооружении, необходимо, чтобы материалы укрытия имели в области 5000–12 000 нм коэффициент прозрачности, близкий к 0.

Интенсивность освещения в теплицах. Высотой стояния солнца над горизонтом определяется интенсивность солнечной радиации. Чем ниже солнце над горизонтом, тем меньше солнечной радиации доходит к поверхности земли. Зимой интенсивность освещенности в теплицах составляет 1–2 % интенсивности радиации в ясный летний день и бывает ниже пороговой величины. Излучение, проникающее через светопрозрачное ограждение, определяет естественную освещенность.

У огурца фотосинтез превышает дыхание начиная при интенсивности освещения 0,0132 кал/см² в минуту (2000 лк). Нормальный рост вегетативных органов обеспечивается при 0,0396 кал/см² в минуту (6000 лк), нормальное развитие и плодоношение возможно при 0,066 кал/см² в минуту (10 000 лк). Помидор требует большей интенсивности освещения. Выгоночные культуры – луки, петрушка и т. д. мирятся с освещенностью 1000 лк.

Свет является основным источником энергии для фотосинтеза. С увеличением интенсивности освещения улучшается качество продукции, увеличивается содержание в ней витаминов, снижается количество вредных для организма нитратов и нитритов, пропорционально возрастает интенсивность фотосинтеза. Повышение освещенности на 1 % в зимний период дает 1 % прибавки урожая. Для большинства растений эта закономерность сохраняется в пределах интенсивности освещения 0,132–0,264 кал/см² в минуту (20 000–40 000 лк). При дальнейшем увеличении интенсивности света интенсивность фотосинтеза начинает снижаться, а затем останавливается на определенном уровне.

Обеспечение оптимальной освещенности в теплицах очень важно для получения высококачественной продукции с минимальным содержанием нитратов. В зимний период при низкой освещенности накопление нитратов в тепличных овощах в 2–4 раза выше, чем летом. Интенсивное освещение (свыше 60 000–70 000 лк) может задерживать рост растений, вызывать ожоги в результате повышения температуры листьев до губительных пределов.

Сроки высадки рассады огурца, помидора в зимние теплицы при естественной освещенности, необходимость электродосвечивания поставлены на научную основу.

Исходя из притока естественной фотосинтетической активной радиации (ФАР) в наиболее критические месяцы (декабрь, январь) территория бывшего СССР делится на световые зоны. К первой отнесены районы, где суммы ФАР, проникающей в теплицы в декабре – январе, составляют 110–220 кал/см² горизонтальной поверхности; ко второй – 410–560, к третьей – 670–970, к четвертой – 1000–1380, к пятой – 1420–1660, к шестой – 1740–2280, к седьмой – 2730–3600 кал/см².

Для определения сроков выращивания и посадки рассады, начала плодоношения используют среднедневные и среднемесячные суммы ФАР, интенсивность ФАР, требования растений к ФАР.

По условиям естественной освещенности высадка огурца в теплицы в первой и второй зонах целесообразна в феврале, в третьей и четвертой – в январе, а в пятой– седьмой – в любое время года. Высадка помидора в первой зоне – в середине марта, в четвертой – в январе, а в седьмой – в любое время года.

При естественной освещенности рассаду огурца можно вырастить в пятой – седьмой световых зонах, рассаду помидора – в седьмой зоне. В остальных районах необходимо искусственное досвечиванне рассады.


Способы улучшения светового режима в теплицах


В сооружениях закрытого грунта световой режим улучшают, уменьшая светонепроницаемые элементы кровли.

Световой режим в пленочных теплицах лучше, чем в остекленных теплицах, вследствие меньшего количества светонепроницаемых элементов кровли. Освещенность составляет 70–80 % наружной, что на 15–25 % выше, чем в парниках, и на 10 % выше, чем в остекленных теплицах. Однако в результате запыляемости пленки освещенность под ней может снижаться на 18–20 % и более, а вследствие загрязненности стекол освещенность внутри теплиц может снижаться до 55 % по сравнению с наружной. В связи с этим теплицы необходимо размещать вдали от источников интенсивного запыления. В остекленных теплицах рекомендуется не реже двух раз в год очищать остекление. Для этого рекомендуется применять раствор, приготовленный на основе фторида аммония концентрацией 2–5 % и минеральной кислоты (азотной, фосфорной, соляной, серной) концентрацией 0,5–1 %.

Наивысшая освещенность в теплицах в зимний период бывает при ориентации их конька с запада на восток, весной – с севера на юг. Повышению продуктивности растений способствует меридиональное размещение рядов растений в весенних теплицах.

Для улучшения освещенности в зимних теплицах можно насыпать на поверхность почвы чистые сосновые опилки или соломенную сечку из расчета 150–200 г опилок или 300 т сечки на 1 м². Эффективность использования растениями света можно увеличить, повышая концентрацию СО2 в воздухе до 0,15–0,25 %, улучшая калийное питание. Применение второго слоя пленки дает высокий тепловой эффект, однако освещенность в сооружениях при этом снижается на 20 %.

Досвечивание рассады в теплицах. Электросветокультура целесообразна только при выращивании рассады. При выращивании овощей она, как правило, неэкономична.

Затраты электроэнергии при этом на 1 кг продукции достигают 150–200 кВт × ч.

В промышленном овощеводстве нашли применение лампы высокого давления ДРЛФ-400 (дуговая ртутно-люминесцентная лампа), вмонтированные в тепличный облучатель ОТ-400, и ДРФ-1000 с осветителем ОТ-1000.

В первый период выращивания рассады осветители ОТ-400 размещают в 2 ряда с расстоянием между ними 1 м и на высоте 0,9–1 м от растений. Их установочная мощность в этот период составляет 240 Вт/м². После расстановки рассады (20–25 растений на 1 м²) лампы размещают в четыре ряда по схеме 1,6 × 2 м и поднимают на высоту 1,2–1,3 м. Установочная мощность при этом составляет 120 Вт/м². Длительность досвечивания до расстановки рассады – 14–16 часов, после расстановки – 12 часов в сутки.

Осветители ОТ-1000 подвешивают на высоте 1,6–2,5 м с расстоянием между лампами 2,5–3 м.

Созданы и внедряются в производство новые светотехнические установки с использованием натриевых ламп высокого давления ДНАТ-400, металлогалогенных ламп ДРИ-400-5, имеющих более высокую светоотдачу, мощность лучистого потока и коэффициент полезного действия.

При выращивании рассады в квартире в январе – феврале обязательно надо применять досвечивание. Как правило, для этого используют люминесцентные лампы.

Закажите опцию "фитоосвещение" нашим специалистам и они подберут необходимое оборудования под ваши растения. 

Автор А.М. Шульгина.

Добавить комментарий
Сергей
Сергей
Здравствуйте.
Подскажите оборудование какого производителя вы предлагаете для установки в теплицах?
Какие требования по электричеству? Сколько потребляют лампы?
Комментировать
Тимур Кочаров
Тимур Кочаров
Тимур Кочаров
Здравствуйте, Сергей! На сегодняшний день есть несколько вариантов оснащения теплиц осветительными приборами. Существуют диодные, индукционные, плазменные и натриевые светильники. Для составления расчета электропотребления и размещения световых приборов вы можете обратиться к нашим специалистам.